µµ¼­/Ã¥°¡°Ýºñ±³ ³ë¶õºÏ
 
³ë¶õºñµð¿À
Ãßõµµ¼­ º£½ºÆ®¼¿·¯ ¸¹ÀÌ º» Ã¥ ½Å°£µµ¼­ ¼­Á¡À̺¥Æ® ÀçÁ¤°¡µµ¼­ ÅëÇÕ°¡°Ýºñ±³
ÄÚ½º¸ð½º
9788983711892
19,800¿ø
¹ÎÁÖÁÖÀÇ¿Í ±× ºñÆÇÀÚµé
9788932010793
28,800¿ø
Àΰ£Á¶°Ç
9788970552156
8,100¿ø
ºÓÀº¹æ ÇØº¯ÀÇ ±æ¼Õ (1988 Á¦12ȸ ÀÌ»ó¹®ÇлóÀÛǰÁý)
9788970126609
13,950¿ø
·ù¼ö¿µÀÇ Æò»ý ·¹½ÃÇÇ
9791194087700
22,500¿ø
ÛÜà´ãÌîïó¢
9788936460112
9,000¿ø
¾ç¸éÀÇ Á¶°³²®µ¥±â
9791168343108
15,750¿ø
9780387961620 23
Modern Geometry-Methods and Applications (Hardcover) - Part Ii, the Geometry and Topology of Manifolds
¿Ü±¹µµ¼­ > ÀÚ¿¬°úÇР> ¼öÇÐ

Modern Geometry-Methods and Applications (Hardcover) - Part Ii, the Geometry and Topology of Manifolds

Dubrovin, B. A.
Springer Verlag
1985³â 08¿ù 31ÀÏ Ãâ°£ Á¤°¡ 128,820¿ø ÆäÀÌÁö 0 Page

'1 Examples of Manifolds.- 1. The concept of a manifold.- 1.1. Definition of a manifold.- 1.2. Mappings of manifolds; tensors on manifolds.- 1.3. Embeddings and immersions of manifolds. Manifolds with boundary.- 2. The simplest examples of manifolds.- 2.1. Surfaces in Euclidean space. Transformation groups as manifolds.- 2.2. Projective spaces.- 2.3. Exercises.- 3. Essential facts from the theory of Lie groups.- 3.1. The structure of a neighbourhood of the identity of a Lie group. The Lie algebra of a Lie group. Semisimplicity.- 3.2. The concept of a linear representation. An example of a non-matrix Lie group.- 4. Complex manifolds.- 4.1. Definitions and examples.- 4.2. Riemann surfaces as manifolds.- 5. The simplest homogeneous spaces.- 5.1. Action of a group on a manifold.- 5.2. Examples of homogeneous spaces.- 5.3. Exercises.- 6. Spaces of constant curvature (symmetric spaces).- 6.1. The concept of a symmetric space.- 6.2. The isometry group of a manifold. Properties of its Lie algebra.- 6.3. Symmetric spaces of the first and second types.- 6.4. Lie groups as symmetric spaces.- 6.5. Constructing symmetric spaces. Examples.- 6.6. Exercises.- 7. Vector bundles on a manifold.- 7.1. Constructions involving tangent vectors.- 7.2. The normal vector bundle on a submanifold.- 2 Foundational Questions. Essential Facts Concerning Functions on a Manifold. Typical Smooth Mappings.- 8. Partitions of unity and their applications.- 8.1. Partitions of unity.- 8.2. The simplest applications of partitions of unity. Integrals over a manifold and the general Stokes formula.- 8.3. Invariant metrics.- 9. The realization of compact manifolds as surfaces in ?N.- 10. Various properties of smooth maps of manifolds.- 10.1. Approximation of continuous mappings by smooth ones.- 10.2. Sard's theorem.- 10.3. Transversal regularity.- 10.4. Morse functions 86 .- 11. Applications of Sard's theorem.- 11.1. The existence of embeddings and immersions.- 11.2. The construction of Morse functions as height functions.- 11.3. Focal points.- 3 The Degree of a Mapping. The Intersection Index of Submanifolds. Applications.- 12. The concept of homotopy.- 12.1. Definition of homotopy. Approximation of continuous maps and homotopies by smooth ones.- 12.2. Relative homotopies.- 13. The degree of a map.- 13.1. Definition of degree.- 13.2. Generalizations of the concept of degree.- 13.3. Classification of homotopy classes of maps from an arbitrary manifold to a sphere.- 13.4. The simplest examples.- 14. Applications of the degree of a mapping.- 14.1. The relationship between degree and integral.- 14.2. The degree of a vector field on a hypersurface.- 14.3. The Whitney number. The Gauss-Bonnet formula.- 14.4. The index of a singular point of a vector field.- 14.5. Transverse surfaces of a vector field. The Poincare-Bendixson theorem.- 15. The intersection index and applications.- 15.1. Definition of the intersection index.- 15.2. The total index of a vector field.- 15.3. The signed number of fixed points of a self-map (the Lefschetz number). The Brouwer fixed-point theorem.- 15.4. The linking coefficient.- 4 Orientability of Manifolds. The Fundamental Group. Covering Spaces (Fibre Bundles with Discrete Fibre).- 16. Orientability and homotopies of closed paths.- 16.1. Transporting an orientation along a path.- 16.2. Examples of non-orientable manifolds.- 17. The fundamental group.- 17.1. Definition of the fundamental group.- 17.2. The dependence on the base point.- 17.3. Free homoto..

Ãâó : ¾Ë¶óµò 
³»¿ëÀÌ ¾ø½À´Ï´Ù.
Modern Geometry-Methods and Applications (Hardcover) - Dubrovin, B. A.
Ãâó : ¾Ë¶óµò 
9780387961620
90,160¿ø
³ë¶õºÏ ¸µÅ© °øÀ¯»çÀÌÆ® : *ÀÚ±â°æ¿µ³ëÇÏ¿ì(Ä«Æä)
³ë¶õºÏ °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ ±¤°í/Á¦ÈÞ¹®ÀÇ  ¼¼Á¾Æ¯º°ÀÚÄ¡½Ã °¡¸§·Î 255-21(2Â÷Ǫ¸£Áö¿À½ÃƼ) 1452È£
»ç¾÷ÀÚ¹øÈ£ 203-02-92535 ÀÎÁ¾ÀÏ ½Å°í¹øÈ£ Á¦ 2015-¼¼Á¾-0075È£ E-mail dlsjong@naver.com 010-2865-2225
COPYRIGHT(c) noranbook.net All rights Reserved.