µµ¼­/Ã¥°¡°Ýºñ±³ ³ë¶õºÏ
 
³ë¶õºñµð¿À
Ãßõµµ¼­ º£½ºÆ®¼¿·¯ ¸¹ÀÌ º» Ã¥ ½Å°£µµ¼­ ¼­Á¡À̺¥Æ® ÀçÁ¤°¡µµ¼­ ÅëÇÕ°¡°Ýºñ±³
Èë ¼Ó¿¡ Àú ¹Ù¶÷ ¼Ó¿¡
9788970124513
10,800¿ø
À§¹ö¸à½¬
9791192372730
16,020¿ø
¹ë·±Å¸Àε¥ÀÌÀÇ ¹«¸»·©ÀÌ
9788954692670
13,500¿ø
ÄÚ½º¸ð½º
9788983711892
19,800¿ø
¹«¿ë±³À°
9788985874809
18,000¿ø
ÇÁ·ÎÆä¼Å³ÎÀÇ Á¶°Ç
9788935204304
10,800¿ø
³ëÀÎÀ» À§ÇÑ ³ª¶ó´Â ¾ø´Ù
9788992579629
9,900¿ø
9780387974309 15
A Basic Course in Algebraic Topology (Hardcover, 3, Corrected 1991.)
¿Ü±¹µµ¼­ > ÀÚ¿¬°úÇР> ¼öÇÐ

A Basic Course in Algebraic Topology (Hardcover, 3, Corrected 1991.)

William S. Massey
Springer Verlag
1997³â 05¿ù 28ÀÏ Ãâ°£ Á¤°¡ 136,980¿ø ÆäÀÌÁö 428 Page

1: Two-Dimensional Manifolds .- 2: The Fundamental Group .- 3: Free Groups and Free Products of Groups.-  4: Seifert and Van Kampen Theorem on the Fundamental Group of the Union of Two Spaces. Applications .-  5: Covering Spaces .- 6: Background and Motivation for Homology Theory .- 7: Definitions and Basic Properties of Homology Theory .- 8: Determination of the Homology Groups of Certain Spaces: Applications and Further Properties of Homology Theory .- 9: Homology of CW-Complexes.-  10: Homology with Arbitrary Coefficient Groups .- 11: The Homology of Product Spaces.- 12: Cohomology Theory.- 13: Products in Homology and Cohomology.- 14: Duality Theorems for the Homology of Manifolds.- 15: Cup Products in Projective Spaces and Applications of Cup Products. Appendix A: A Proof of De Rham's Theorem..-  Appendix B: Permutation Groups or Tranformation Groups.

Ãâó : ¾Ë¶óµò 
³»¿ëÀÌ ¾ø½À´Ï´Ù.
A Basic Course in Algebraic Topology (Hardcover, 3, Corrected 1991.) - William S. Massey
Ãâó : ¾Ë¶óµò 
9780387974309
112,320¿ø
9780192822352
68,790¿ø
9784860847371
34,200¿ø
9788981723705
9,700¿ø
³ë¶õºÏ ¸µÅ© °øÀ¯»çÀÌÆ® : *ÀÚ±â°æ¿µ³ëÇÏ¿ì(Ä«Æä)
³ë¶õºÏ °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ ±¤°í/Á¦ÈÞ¹®ÀÇ  ¼¼Á¾Æ¯º°ÀÚÄ¡½Ã °¡¸§·Î 255-21(2Â÷Ǫ¸£Áö¿À½ÃƼ) 1452È£
»ç¾÷ÀÚ¹øÈ£ 203-02-92535 ÀÎÁ¾ÀÏ ½Å°í¹øÈ£ Á¦ 2015-¼¼Á¾-0075È£ E-mail dlsjong@naver.com 010-2865-2225
COPYRIGHT(c) noranbook.net All rights Reserved.