µµ¼­/Ã¥°¡°Ýºñ±³ ³ë¶õºÏ
 
³ë¶õºñµð¿À
Ãßõµµ¼­ º£½ºÆ®¼¿·¯ ¸¹ÀÌ º» Ã¥ ½Å°£µµ¼­ ¼­Á¡À̺¥Æ® ÀçÁ¤°¡µµ¼­ ÅëÇÕ°¡°Ýºñ±³
¼³¹Î¼®ÀÇ ¼¼°è»ç ´ë¸ðÇè 6
9791196893170
10,800¿ø
³ª´Â 3Çгâ 2¹Ý 7¹ø ¾Ö¹ú·¹
9788936414085
9,900¿ø
°æÁ¦±â»ç ±Ã±ÝÁõ 300¹® 300´ä(2025)
9791191183337
23,400¿ø
Çູ¿¡ °üÇÑ ÂªÀº ±Û
9791197153365
12,600¿ø
½ºÄÉÄ¡¾÷ 2015 & V-Ray
9788956746517
31,500¿ø
ÀâÃÊ´Â ¾ø´Ù
9788985494779
8,100¿ø
»çÇÇ¿£½º
9788934972464
24,120¿ø
9780387976556 104
Brownian Motion and Stochastic Calculus (Paperback, 2nd, Subsequent)
¿Ü±¹µµ¼­ > ÀÚ¿¬°úÇР> ¼öÇÐ

Brownian Motion and Stochastic Calculus (Paperback, 2nd, Subsequent)

Ioannis Karatzas
Springer Verlag
1991³â 08¿ù 31ÀÏ Ãâ°£ Á¤°¡ 84,950¿ø ÆäÀÌÁö 0 Page

1 Martingales, Stopping Times, and Filtrations.- 1.1. Stochastic Processes and ?-Fields.- 1.2. Stopping Times.- 1.3. Continuous-Time Martingales.- A. Fundamental inequalities.- B. Convergence results.- C. The optional sampling theorem.- 1.4. The Doob-Meyer Decomposition.- 1.5. Continuous, Square-Integrable Martingales.- 1.6. Solutions to Selected Problems.- 1.7. Notes.- 2 Brownian Motion.- 2.1. Introduction.- 2.2. First Construction of Brownian Motion.- A. The consistency theorem.- B. The Kolmogorov-?entsov theorem.- 2.3. Second Construction of Brownian Motion.- 2.4. The SpaceC[0, ?), Weak Convergence, and Wiener Measure.- A. Weak convergence.- B. Tightness.- C. Convergence of finite-dimensional distributions.- D. The invariance principle and the Wiener measure.- 2.5. The Markov Property.- A. Brownian motion in several dimensions.- B. Markov processes and Markov families.- C. Equivalent formulations of the Markov property.- 2.6. The Strong Markov Property and the Reflection Principle.- A. The reflection principle.- B. Strong Markov processes and families.- C. The strong Markov property for Brownian motion.- 2.7. Brownian Filtrations.- A. Right-continuity of the augmented filtration for a strong Markov process.- B. A "universal" filtration.- C. The Blumenthal zero-one law.- 2.8. Computations Based on Passage Times.- A. Brownian motion and its running maximum.- B. Brownian motion on a half-line.- C. Brownian motion on a finite interval.- D. Distributions involving last exit times.- 2.9. The Brownian Sample Paths.- A. Elementary properties.- B. The zero set and the quadratic variation.- C. Local maxima and points of increase.- D. Nowhere differentiability.- E. Law of the iterated logarithm.- F. Modulus of continuity.- 2.10. Solutions to Selected Problems.- 2.11. Notes.- 3 Stochastic Integration.- 3.1. Introduction.- 3.2. Construction of the Stochastic Integral.- A. Simple processes and approximations.- B. Construction and elementary properties of the integral.- C. A characterization of the integral.- D. Integration with respect to continuous, local martingales.- 3.3. The Change-of-Variable Formula.- A. The Ito rule.- B. Martingale characterization of Brownian motion.- C. Bessel processes, questions of recurrence.- D. Martingale moment inequalities.- E. Supplementary exercises.- 3.4. Representations of Continuous Martingales in Terms of Brownian Motion.- A. Continuous local martingales as stochastic integrals with respect to Brownian motion.- B. Continuous local martingales as time-changed Brownian motions.- C. A theorem of F. B. Knight.- D. Brownian martingales as stochastic integrals.- E. Brownian functionals as stochastic integrals.- 3.5. The Girsanov Theorem.- A. The basic result.- B. Proof and ramifications.- C. Brownian motion with drift.- D. The Novikov condition.- 3.6. Local Time and a Generalized Ito Rule for Brownian Motion.- A. Definition of local time and the Tanaka formula.- B. The Trotter existence theorem.- C. Reflected Brownian motion and the Skorohod equation.- D. A generalized Ito rule for convex functions.- E. The Engelbert-Schmidt zero-one law.- 3.7. Local Time for Continuous Semimartingales.- 3.8. Solutions to Selected Problems.- 3.9. Notes.- 4 Brownian Motion and Partial Differential Equations.- 4.1. Introduction.- 4.2. Harmonic Functions and the Dirichlet Problem.- A. The mean-value property.- B. The Dirichlet problem.- C. Conditions for regularity.- D. Integral formulas of Poisson.- E. Supplementary exercises.- 4...

Ãâó : ¾Ë¶óµò 
³»¿ëÀÌ ¾ø½À´Ï´Ù.
Brownian Motion and Stochastic Calculus (Paperback, 2nd, Subsequent) - Ioannis Karatzas
Ãâó : ¾Ë¶óµò 
9780387976556
67,730¿ø
9780393307801
41,920¿ø
³ë¶õºÏ ¸µÅ© °øÀ¯»çÀÌÆ® : *ÀÚ±â°æ¿µ³ëÇÏ¿ì(Ä«Æä)
³ë¶õºÏ °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ ±¤°í/Á¦ÈÞ¹®ÀÇ  ¼¼Á¾Æ¯º°ÀÚÄ¡½Ã °¡¸§·Î 255-21(2Â÷Ǫ¸£Áö¿À½ÃƼ) 1452È£
»ç¾÷ÀÚ¹øÈ£ 203-02-92535 ÀÎÁ¾ÀÏ ½Å°í¹øÈ£ Á¦ 2015-¼¼Á¾-0075È£ E-mail dlsjong@naver.com 010-2865-2225
COPYRIGHT(c) noranbook.net All rights Reserved.