|
|
|
|
|
This is the fourth edition of Serge Lang's Complex Analysis. The first part of the book covers the basic material of complex analysis, and the second covers many special topics, such as the Riemann Mapping Theorem, the gamma function, and analytic continuation. Power series methods are used more systematically than in other texts, and the proofs using these methods often shed more light on the results than the standard proofs do. The first part of Complex Analysis is suitable for an introductory course on the undergraduate level, and the additional topics covered in the second part give the instructor of a graduate course a great deal of flexibility in structuring a more advanced course. This is a revised edition, new examples and exercises have been added, and many minor improvements have been made throughout the text.This well-established book covers the basic material of complex analysis plus many special topics such as Riemann Mapping Theorem, the gamma function, and analytic continuation. The book's unique use of power series methods in proofs sheds more light on the results of complex analysis than do standard proofs. This extensively revised new edition includes new examples and exercises as well as an updated and extended bibliography.Now in its fourth edition, the first part of this book is devoted to the basic material of complex analysis, while the second covers many special topics, such as the Riemann Mapping Theorem, the gamma function, and analytic continuation. Power series methods are used more systematically than is found in other texts, and the resulting proofs often shed more light on the results than the standard proofs. While the first part is suitable for an introductory course at undergraduate level, the additional topics covered in the second part give the instructor of a gradute course a great deal of flexibility in structuring a more advanced course. |
| Ãâó : ¾Ë¶óµò |

|
|
|
|