µµ¼­/Ã¥°¡°Ýºñ±³ ³ë¶õºÏ
 
³ë¶õºñµð¿À
Ãßõµµ¼­ º£½ºÆ®¼¿·¯ ¸¹ÀÌ º» Ã¥ ½Å°£µµ¼­ ¼­Á¡À̺¥Æ® ÀçÁ¤°¡µµ¼­ ÅëÇÕ°¡°Ýºñ±³
¹«Áö°³ ¿ø¸® ½º¸¶Æ® ¹öÀü
9788992825238
9,000¿ø
½ÃÅ©¸´ µ¥Àϸ® ƼĪ
9788952230324
13,500¿ø
Æ®·»µå ÄÚ¸®¾Æ 2026
9791193638859
18,000¿ø
ÀâÃÊ´Â ¾ø´Ù
9788985494779
8,100¿ø
¾ÆÇÁ´Ï±î ûÃáÀÌ´Ù
9788965700036
12,600¿ø
2026 Å«º°½Ü ÃÖżºÀÇ º°º°Çѱ¹»ç Çѱ¹»ç´É·Â°ËÁ¤½ÃÇè ½ÉÈ­(1,2,3±Þ) »ó
9791138934428
17,100¿ø
Á¾±³ÀÇÃ¥(THE RELIGIONS BOOK)
9788962605914
25,200¿ø
9781441999818 206
Introduction to Smooth Manifolds (Hardcover, 2nd)
¿Ü±¹µµ¼­ > ÀÚ¿¬°úÇÐ/±â¼ú > ¼öÇÐ

Introduction to Smooth Manifolds (Hardcover, 2nd)

J. M. Lee
Springer Verlag
2012³â 08¿ù 23ÀÏ Ãâ°£ Á¤°¡ 125,920¿ø ÆäÀÌÁö 708 Page

Preface.- 1 Smooth Manifolds.- 2 Smooth Maps.- 3 Tangent Vectors.- 4 Submersions, Immersions, and Embeddings.- 5 Submanifolds.- 6 Lie Groups.- 7 Vector Fields.- 8 Integral Curves and Flows.- 9 Vector Bundles.- 10 Sard's Theorem.- 11 Cotangent Bundle.- 12 Tensors.- 13 Riemannian Metrics.- 14 Differential Forms.- 15 Orientations.- 16 Integration on Manifolds.- 17 Distributions and Foliations.- 18 The Exponential Map of a Lie Group.- 19 Quotient Manifolds.- 20 De Rham Cohomology.- 21 The de Rham Theorem.- 22 Symplectic Manifolds.- Appendix A: Review of Topology.- Appendix B: Review of Linear Algebra.- Appendix C: Review of Calculus.- Appendix D: Review of Differential Equations.- References.- Notation Index.- Subject Index

Ãâó : ¾Ë¶óµò 
³»¿ëÀÌ ¾ø½À´Ï´Ù.
fiogf49gjkf0dfiogf49gjkf0dfiogf49gjkf0d Introduction to Smooth Manifolds (Hardcover, 2nd) - J. M. Lee
Ãâó : ¾Ë¶óµò 
9781441999818
105,450¿ø
³ë¶õºÏ ¸µÅ© °øÀ¯»çÀÌÆ® : *ÀÚ±â°æ¿µ³ëÇÏ¿ì(Ä«Æä)
³ë¶õºÏ °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ ±¤°í/Á¦ÈÞ¹®ÀÇ  ¼¼Á¾Æ¯º°ÀÚÄ¡½Ã °¡¸§·Î 255-21(2Â÷Ǫ¸£Áö¿À½ÃƼ) 1452È£
»ç¾÷ÀÚ¹øÈ£ 203-02-92535 ÀÎÁ¾ÀÏ ½Å°í¹øÈ£ Á¦ 2015-¼¼Á¾-0075È£ E-mail dlsjong@naver.com 010-2865-2225
COPYRIGHT(c) noranbook.net All rights Reserved.