/åݺ
 
õ Ʈ   å Ű ̺Ʈ հݺ
?랑???택?는 ?별??기? 1
9788971843826
3,000
ȲȦ ︲
9791188839308
10,800
21  Ϻ
9788959758227
6,300
2025 м   ѹ ڽ򰡹
9791196995799
20,700
ũ ɸ
9791198754080
19,710
ε ȯ д
9791190408820
19,800
ѳ  ȣ 14
9791175484887
15,120
9783540641339 23
Introduction to Coding Theory (Hardcover, 3rd, Revised, Subsequent)

Introduction to Coding Theory (Hardcover, 3rd, Revised, Subsequent)

Jacobus Hendricus Van Lint
Springer Verlag
1999 02 28 176,800 227 Page

1 Mathematical Background.- 1.1. Algebra.- 1.2. Krawtchouk Polynomials.- 1.3. Combinatorial Theory.- 1.4. Probability Theory.- 2 Shannon's Theorem.- 2.1. Introduction.- 2.2. Shannon's Theorem.- 2.3. On Coding Gain.- 2.4. Comments.- 2.5. Problems.- 3 Linear Codes.- 3.1. Block Codes.- 3.2. Linear Codes.- 3.3. Hamming Codes.- 3.4. Majority Logic Decoding.- 3.5. Weight Enumerators.- 3.6. The Lee Metric.- 3.7. Comments.- 3.8. Problems.- 4 Some Good Codes.- 4.1. Hadamard Codes and Generalizations.- 4.2. The Binary Golay Code.- 4.3. The Ternary Golay Code.- 4.4. Constructing Codes from Other Codes.- 4.5. Reed-Muller Codes.- 4.6. Kerdock Codes.- 4.7. Comments.- 4.8. Problems.- 5 Bounds on Codes.- 5.1. Introduction: The Gilbert Bound.- 5.2. Upper Bounds.- 5.3. The Linear Programming Bound.- 5.4. Comments.- 5.5. Problems.- 6 Cyclic Codes.- 6.1. Definitions.- 6.2. Generator Matrix and Check Polynomial.- 6.3. Zeros of a Cyclic Code.- 6.4. The Idempotent of a Cyclic Code.- 6.5. Other Representations of Cyclic Codes.- 6.6. BCH Codes.- 6.7. Decoding BCH Codes.- 6.8. Reed-Solomon Codes.- 6.9. Quadratic Residue Codes.- 6.10. Binary Cyclic Codes of Length 2n(n odd).- 6.11. Generalized Reed-Muller Codes.- 6.12. Comments.- 6.13. Problems.- 7 Perfect Codes and Uniformly Packed Codes.- 7.1. Lloyd's Theorem.- 7.2. The Characteristic Polynomial of a Code.- 7.3. Uniformly Packed Codes.- 7.4. Examples of Uniformly Packed Codes.- 7.5. Nonexistence Theorems.- 7.6. Comments.- 7.7. Problems.- 8 Codes over ?4.- 8.1. Quaternary Codes.- 8.2. Binary Codes Derived from Codes over ?4.- 8.3. Galois Rings over ?4.- 8.4. Cyclic Codes over ?4.- 8.5. Problems.- 9 Goppa Codes.- 9.1. Motivation.- 9.2. Goppa Codes.- 9.3. The Minimum Distance of Goppa Codes.- 9.4. Asymptotic Behaviour of Goppa Codes.- 9.5. Decoding Goppa Codes.- 9.6. Generalized BCH Codes.- 9.7. Comments.- 9.8. Problems.- 10 Algebraic Geometry Codes.- 10.1. Introduction.- 10.2. Algebraic Curves.- 10.3. Divisors.- 10.4. Differentials on a Curve.- 10.5. The Riemann-Roch Theorem.- 10.6. Codes from Algebraic Curves.- 10.7. Some Geometric Codes.- 10.8. Improvement of the Gilbert-Varshamov Bound.- 10.9. Comments.- 10.10.Problems.- 11 Asymptotically Good Algebraic Codes.- 11.1. A Simple Nonconstructive Example.- 11.2. Justesen Codes.- 11.3. Comments.- 11.4. Problems.- 12 Arithmetic Codes.- 12.1. AN Codes.- 12.2. The Arithmetic and Modular Weight.- 12.3. Mandelbaum-Barrows Codes.- 12.4. Comments.- 12.5. Problems.- 13 Convolutional Codes.- 13.1. Introduction.- 13.2. Decoding of Convolutional Codes.- 13.3. An Analog of the Gilbert Bound for Some Convolutional Codes.- 13.4. Construction of Convolutional Codes from Cyclic Block Codes.- 13.5. Automorphisms of Convolutional Codes.- 13.6. Comments.- 13.7. Problems.- Hints and Solutions to Problems.- References.

ó : ˶ 
ϴ.
fiogf49gjkf0dfiogf49gjkf0dfiogf49gjkf0d Introduction to Coding Theory (Hardcover, 3rd, Revised, Subsequent) - Jacobus Hendricus Van Lint
ó : ˶ 
9783540641339
152,190
9780134093413
325,040
9780521520775
43,800
9780198503477
111,870
9780130181688
54,150
9780821838488
142,690
9780817643393
113,780
9780393065961
30,400
9780821829554
194,300
9784056007442
20,400
ũ Ʈ : *ڱ濵Ͽ(ī)
 ޹ħ   Ưġ 255-21(2ǪƼ) 1452ȣ
ڹȣ 203-02-92535 Űȣ 2015--0075ȣ E-mail dlsjong@naver.com 010-2865-2225
COPYRIGHT(c) noranbook.net All rights Reserved.