/åݺ
 
õ Ʈ   å Ű ̺Ʈ հݺ
絿 ӿ 2
9791172624910
15,300
  ˱  Ĺ ̾߱
9791196892807
16,200
ε ȯ д
9791190408820
19,800
?랑???택?는 ?별??기? 1
9788971843826
3,000
21  Ϻ
9788959758227
6,300
̾߱
9788983963925
13,500
ڸ챸Ŭ
9791199305304
10,800
9783540641339 22
Introduction to Coding Theory (Hardcover, 3rd, Revised, Subsequent)

Introduction to Coding Theory (Hardcover, 3rd, Revised, Subsequent)

Jacobus Hendricus Van Lint
Springer Verlag
1999 02 28 176,800 227 Page

1 Mathematical Background.- 1.1. Algebra.- 1.2. Krawtchouk Polynomials.- 1.3. Combinatorial Theory.- 1.4. Probability Theory.- 2 Shannon's Theorem.- 2.1. Introduction.- 2.2. Shannon's Theorem.- 2.3. On Coding Gain.- 2.4. Comments.- 2.5. Problems.- 3 Linear Codes.- 3.1. Block Codes.- 3.2. Linear Codes.- 3.3. Hamming Codes.- 3.4. Majority Logic Decoding.- 3.5. Weight Enumerators.- 3.6. The Lee Metric.- 3.7. Comments.- 3.8. Problems.- 4 Some Good Codes.- 4.1. Hadamard Codes and Generalizations.- 4.2. The Binary Golay Code.- 4.3. The Ternary Golay Code.- 4.4. Constructing Codes from Other Codes.- 4.5. Reed-Muller Codes.- 4.6. Kerdock Codes.- 4.7. Comments.- 4.8. Problems.- 5 Bounds on Codes.- 5.1. Introduction: The Gilbert Bound.- 5.2. Upper Bounds.- 5.3. The Linear Programming Bound.- 5.4. Comments.- 5.5. Problems.- 6 Cyclic Codes.- 6.1. Definitions.- 6.2. Generator Matrix and Check Polynomial.- 6.3. Zeros of a Cyclic Code.- 6.4. The Idempotent of a Cyclic Code.- 6.5. Other Representations of Cyclic Codes.- 6.6. BCH Codes.- 6.7. Decoding BCH Codes.- 6.8. Reed-Solomon Codes.- 6.9. Quadratic Residue Codes.- 6.10. Binary Cyclic Codes of Length 2n(n odd).- 6.11. Generalized Reed-Muller Codes.- 6.12. Comments.- 6.13. Problems.- 7 Perfect Codes and Uniformly Packed Codes.- 7.1. Lloyd's Theorem.- 7.2. The Characteristic Polynomial of a Code.- 7.3. Uniformly Packed Codes.- 7.4. Examples of Uniformly Packed Codes.- 7.5. Nonexistence Theorems.- 7.6. Comments.- 7.7. Problems.- 8 Codes over ?4.- 8.1. Quaternary Codes.- 8.2. Binary Codes Derived from Codes over ?4.- 8.3. Galois Rings over ?4.- 8.4. Cyclic Codes over ?4.- 8.5. Problems.- 9 Goppa Codes.- 9.1. Motivation.- 9.2. Goppa Codes.- 9.3. The Minimum Distance of Goppa Codes.- 9.4. Asymptotic Behaviour of Goppa Codes.- 9.5. Decoding Goppa Codes.- 9.6. Generalized BCH Codes.- 9.7. Comments.- 9.8. Problems.- 10 Algebraic Geometry Codes.- 10.1. Introduction.- 10.2. Algebraic Curves.- 10.3. Divisors.- 10.4. Differentials on a Curve.- 10.5. The Riemann-Roch Theorem.- 10.6. Codes from Algebraic Curves.- 10.7. Some Geometric Codes.- 10.8. Improvement of the Gilbert-Varshamov Bound.- 10.9. Comments.- 10.10.Problems.- 11 Asymptotically Good Algebraic Codes.- 11.1. A Simple Nonconstructive Example.- 11.2. Justesen Codes.- 11.3. Comments.- 11.4. Problems.- 12 Arithmetic Codes.- 12.1. AN Codes.- 12.2. The Arithmetic and Modular Weight.- 12.3. Mandelbaum-Barrows Codes.- 12.4. Comments.- 12.5. Problems.- 13 Convolutional Codes.- 13.1. Introduction.- 13.2. Decoding of Convolutional Codes.- 13.3. An Analog of the Gilbert Bound for Some Convolutional Codes.- 13.4. Construction of Convolutional Codes from Cyclic Block Codes.- 13.5. Automorphisms of Convolutional Codes.- 13.6. Comments.- 13.7. Problems.- Hints and Solutions to Problems.- References.

ó : ˶ 
ϴ.
fiogf49gjkf0dfiogf49gjkf0dfiogf49gjkf0d Introduction to Coding Theory (Hardcover, 3rd, Revised, Subsequent) - Jacobus Hendricus Van Lint
ó : ˶ 
9783540641339
152,190
9780130181688
54,150
9780471186366
229,100
9788960510166
9,900
9780201510102
51,910
9780471050599
259,010
ũ Ʈ : *ڱ濵Ͽ(ī)
 ޹ħ   Ưġ 255-21(2ǪƼ) 1452ȣ
ڹȣ 203-02-92535 Űȣ 2015--0075ȣ E-mail dlsjong@naver.com 010-2865-2225
COPYRIGHT(c) noranbook.net All rights Reserved.